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OSCILLATION AND NONOSCILLATION OF NONLINEAR
SECOND ORDER DIFFERENCE EQUATIONS

M. M. A. EL-SHEIKH, M. H. ABD ALLA AND E. M. EL-MAGHRABI

Abstract. In this paper, we study oscillation and nonoscillation behav-
iour of the second order nonlinear difference equations of the form

∆(rnψ(xn)∆xn) + qn+1f(xn+1) = 0, n ∈ N(no),

and
∆(rnψ(xn)∆xn) + qn f(n, xn) = 0, n ∈ N(no),

where N(no) = {no, no + 1, ...}, (no is a fixed nonnegative integer number),
∆xn = xn+1 − xn is the forward difference operator, x : N(no) → R,
r : N(no) → (0,∞), ψ : R→ (0,∞), f is a real valued continuous function,
and {qn} is a sequence of real valued.

AMS Mathematics Subject Classification : 39A11
Key words and phrases : Oscillation and nonoscillation, Asymptotic behav-
ior of solutions, Nonlinear second order difference equations.

1. Introduction

In recent years, there has been an increasing interest in the study of oscillation
and asymptotic behaviour of solutions of nonlinear difference equations, see for
example ([1], [3], [4], [10], [11], [13], [14]) and the references cited therein. In [3],
[7] and [8], the authors have dealt with oscillation of the difference equation

∆(rn∆xn) + f(n, xn) = 0, n ∈ N(no).

The aim of this paper is to obtain a new criteria for oscillation and nonoscil-
lation of the general difference equations

∆(rnψ(xn)∆xn) + qn+1f(xn+1) = 0, n ∈ N(no), (1)

and

∆(rnψ(xn)∆xn) + qnf(n, xn) = 0, n ∈ N(no), (2)
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where N(no) = {no, no + 1, ...}, (no is a fixed nonnegative integer number),
∆xn = xn+1 − xn is the forward difference operator, x : N(no) → R, r :
N(no) → (0,∞), ψ : R → (0,∞), f is a real valued continuous function and
{qn} is a sequence of real valued. Section 1 consists of a brief introduction and
review of relevant material. In Section 2 we discuss a new sufficient condition
for oscillation of all solutions of the second order nonlinear difference equations
of type (1). In section 3 we present several necessary and sufficient conditions
for nonoscillation of solutions of (2). A nontrivial solution of (1) or (2) is said to
be oscillatory if for every no ∈ N(no) there exists n ≥ no such that xn xn+1 < 0
([1], p. 322). Otherwise, it is called nonoscillatory.

2. Oscillation of nonlinear difference equations

In this section we give sufficient conditions for oscillation of solutions of equa-
tion (1) with oscillating coefficients qn. Our results in this section improve and
partially generalize some results of Thandapani, et al [9] and Zhang, et al [14].

Through this section, we assume that

(I) f : R → R is nondecreasing function, xf(x) > 0, x 6= 0.

(II) lim
n→∞

n∑

l=no

1
rlψ(xl)

= ∞, for n ∈ N(no).

The following Lemmas will be needed in this section.

Lemma 1. Suppose that {xn}, n ∈ N(no), is a nonoscillatory solution of (1).
If there exists an n1 ∈ N(no) such that

−rnoψ(xno)∆xno

f(xno)
+

n−1∑

l=no

ql +
n1−1∑

l=no

rlψ(xl)∆xl∆f(xl)
f(xl)f(xl+1)

≥ m, (3)

where m > 0 and n ∈ N(no). Then

(1) rnψ(xn)∆xn ≤ −mf(xn1), when {xn} is a positive, n ∈ N(n1), (4)

(2) rnψ(xn)∆xn ≥ −mf(xn1), when {xn} is a negative, n ∈ N(n1). (5)

Proof. From (1), it is clear that

∆(rnψ(xn)∆xn)
f(xn+1)

= − qn+1, for n ∈ N(no).

Then

∆
[
rnψ(xn)∆xn

f(xn)

]
= − qn+1 −

rnψ(xn)∆xn∆f(xn)
f(xn)f(xn+1)

. (6)
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Summing (6) from no to n− 1, we have

n−1∑

l=no

∆
[
rlψ(xl)∆xl
f(xl)

]
= −

n−1∑

l=no

ql+1 −
n−1∑

l=no

rlψ(xl)∆xl∆f(xl)
f(xl)f(xl+1)

,

we get

−rnψ(xn)∆xn
f(xn)

= −rnoψ(xno)∆xno

f(xno)
+

n−1∑

l=no

ql+1 +
n−1∑

l=no

rlψ(xl)∆xl∆f(xl)
f(xl)f(xl+1)

.

(7)

By (3) and (7), we get

−
rnψ(xn)∆xn

f(xn)
≥ m+

n−1∑

l=n1

rlψ(xl)∆xl∆f(xl)
f(xl)f(xl+1)

. (8)

But since by (I), it follows that the sum of the right hand side of (8) is positive.
Hence

xn∆xn < 0, for n ∈ N(n1).

Now we have one of the two possibilities {xn} is positive or negative. Suppose
first that {xn} is positive. Setting −rnψ(xn)∆xn = wn > 0. Hence (8) becomes

wn
f(xn)

≥ m−
n−1∑

l=n1

wl∆f(xl)
f(xl)f(xl+1)

. (9)

Now suppose that

vn
f(xn)

= m−
n−1∑

l=n1

vl∆f(xl)
f(xl)f(xl+1)

. (10)

Furthermore, using induction, we can prove that wn ≥ vn for all n ∈ N(n1).
Taking the difference operator on both sides of (10), we find

∆
(

vn
f(xn)

)
=

∆vn
f(xn+1)

+ vn∆
(

1
f(xn)

)
= −

vn∆f(xn)
f(xn)f(xn+1)

.

Hence
∆vn

f(xn+1)
= 0, f(xn+1) 6= 0.

This implies that ∆vn = 0. Therefore vn = vn1 = mf(xn1), for n ∈ N(n1).
Hence

rnψ(xn)∆xn ≤ −mf(xn1), n ∈ N(n1).

The proof for the case when {xn} is negative follows from similar arguments
by taking rnψ(xn)∆xn = wn > 0. �

Theorem 1. Let {xn}, n ∈ N(n1 − 1) , be a solution of Eq (1)
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(i) If {xn} is a nonoscillatory solution of Eq (1) and lim
n→∞

inf
n∑

l=n1

ql > −∞,

then
∞∑

l=n1

rlψ(xl)∆xl∆f(xl)
f(xl)f(xl+1)

<∞. (11)

(ii) If lim
n→∞

n∑

l=n1

ql = ∞, then every solution of Eq (1) is oscillatory.

Proof. (i) For the sake of contradiction, assume that
∞∑

l=n1

rlψ(xl)∆xl∆f(xl)
f(xl)f(xl+1)

= ∞.

Since by assumption lim
n→∞

inf
n∑

l=n1

ql > −∞, then there exists n∗
1 ≥ n1 such that

(3) holds. For the case {xn} is positive and by Lemma 1, we obtain

rnψ(xn)∆xn ≤ −mf(x∗n1
), for n ≥ n∗

1.

But since m > 0 and ψ(xn) is positive for n ∈ N(n∗
1), then we have

∆xn ≤ −mf(xn∗
1
)
(

1
rnψ(xn)

)
.

Then
n−1∑

l=n∗
1

∆xn ≤ −mf(xn∗
1
)
n−1∑

l=n∗
1

1
rlψ(xl)

,

i.e.,

xn ≤ xn∗
1
−mf(xn∗

1
)
n−1∑

l=n∗
1

1
rlψ(xl)

. (12)

The right hand side of (12) tends to −∞ as n→ ∞, while the left side is positive.
This is a contradiction. The proof for the case {xn} is negative is similar.

(ii) Suppose the contrary that, there exists a positive nonoscillatory solution
of (1) say {xn} for all n ≥ n1, then the condition of Lemma 1 is satisfied. Thus
we have

∆xn ≤ − mf(xn1)
rnψ(xn)

, for n ≥ n1. (13)

Now taking the sum of (13), from n1 to n− 1, we get

xn ≤ xn1 −mf(xn1)
n−1∑

l=n1

1
rlψ(xl)

. (14)
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Taking the limit of (14) as n → ∞, we get xn → −∞. This is a contradiction.
The case of xn < 0, the proof is similar and hence it is omitted. �

Lemma 2. Assume that

(A1) lim
|x|→∞

|f(x)| = ∞, (A2) lim
n→∞

n∑

l=no

ql exists.

If {xn} is a nonoscillatory solution of (1). Then

rnψ(xn)∆xn
f(xn)

=
∞∑

l=n

ql+1 +
∞∑

l=n

rlψ(xl)∆xl∆f(xl)
f(xl)f(xl+1)

, for n ∈ N(no). (15)

Proof. The proof is similar to the proof of Lemma 2.2 in [14], and so it is omitted.
�

Theorem 2. Let (A2) be satisfied. Suppose that

(A3) 0 <
∫ ∞

ε

dy

f(y)
, and

∫ −∞

−ε

dy

f(y)
<∞, for all ε > 0;

(A4) lim
n→∞

n∑

l=no

1
rlψ(xl)

∞∑

i=l+1

qi = ∞.

Then every solution of (1) is oscillatory.

Proof. Suppose this is false. Without loss of generality, let {xn} be an eventually
positive solution of (1). Then by Lemma 2 and condition (I), we obtain

∞∑

l=n

rlψ(xl)∆xl∆f(xl)
f(xl)f(xl+1)

≥ 0.

Thus
rnψ(xn)∆xn

f(xn)
≥

∞∑

l=n

ql+1, for n ∈ N(no),

i.e.,

∆xn
f(xn)

≥ 1
rnψ(xn)

∞∑

l=n

ql+1, for n ∈ N(no). (16)

The sum of both sides of (16) from no to n, we obtain
n∑

l=no

∆xl
f(xl)

≥
n∑

l=no

1
rlψ(xl)

∞∑

i=l+1

qi+1. (17)

Define g(t) = xl+(t− l)∆xl, l ≤ t ≤ l+1. Then we have one of the following
two cases.
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Case 1. If ∆xl ≥ 0, then xl ≤ g(t) ≤ xl+1. Thus in view of the assumption
(I), we get

∆xl
f(xl+1)

≤ g′(t)
f(g(t))

≤ ∆xl
f(xl)

. (18)

Case 2. If ∆xl < 0, then xl+1 ≤ g(t) ≤ xl. So we can directly obtain (18).
Now by (17) and (18), we get

∫ ∞

g(no)

ds

f(s)
≥

∫ n+1

no

dg(t)
f(g(t))

≥
n∑

l=no

1
rlψ(xl)

∞∑

i=l+1

qi+1. (19)

Let G(y) =
∫ ∞

y

dy

f(y)
, then

G(g(no)) ≥
n∑

l=no

1
rlψ(xl)

∞∑

i=l+1

qi+1.

This contradicts condition (A4). Similarly, one can prove that (3) does not
possess eventually negative solution. �

3. Nonoscillatory behaviour of solutions

In this section, we discuss nonoscillatory behaviour of solutions of (2). We
assume that ψ(x) is nondecreasing in x. Let {qn}∞n=no

be a positive sequence of
real numbers. Our results partially generalize those of [7].

Through this section, we assume that the condition (II) holds, and

(III)f(n, x) > 0 for all (n, x) ∈ N(no) × (0,∞).

Before stating our results we give the following result of [2] which considered
as a discrete analog of Schauder’s theorem.

Lemma 3. ([2]) Let k be a closed and convex subset of l∞. Suppose that T is a
continuous map such that T (k) is contained in k, and suppose further that T (k)
is uniformly Cauchy. Then T has a fixed point in k.

Now we give the following results.

Lemma 4. Let {xn}∞n=no
be an eventually positive solution of (2). Then there

exist two positive constants c1, c2 and s ∈ N(no) such that {xn} is monotonically
increasing and

c1 ≤ xn ≤ c2Rs, n(c1), for n ∈ N(s),
where

Rs, n(c1)=
n−1∑

k=s

1
rkψ(c1)

.
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Proof. Since {xn} is an eventually positive solutions of (2). Then there exists
an s ∈ N(no) such that xn > 0 for n ∈ N(s). It follows from (2) and (III) that

∆(rnψ(xn)∆xn) < 0,

i.e.,

xn+2 < xn+1 + (∆xn)
rnψ(xn)

rn+1ψ(xn+1)
, n ∈ N(s), (20)

If there exists an n1 ∈ N(s) such that xn1+1 ≤ xn1 , then it follows from (20) that
xn+2 < xn+1 for all n ∈ N(n1). This means that {xn} is eventually decreasing.
But since by (20) and (II), it follows that

xn ≤ xs + rs−1ψ(xs−1)∆xs−1

n−1∑

k=s

1
rkψ(xk)

. (21)

It follows by (II) that {xn} is an eventually negative when n is large enough.
This contradicts the fact that {xn} is eventually positive. Therefore {xn} is
eventually increasing and the sequence {rnψ(xn)∆xn} is positive. Since xn > 0,
and ψ(xn) is nondecreasing for n ∈ N(s), then there exists c1 > 0 such that
c1 ≤ xn for n ∈ N(s). Thus

n−1∑

k=s

1
rkψ(xk)

≤
n−1∑

k=s

1
rkψ(c1)

. (22)

Therefore, the relation (21) becomes

xn ≤ xs + rs−1ψ(xs−1)∆xs−1

n−1∑

k=s

1
rkψ(c1)

, (23)

i.e.,
xn ≤ c2Rs, n(c1),

where c2 is a positive constant. �

Theorem 3. If any nonoscillatory positive solution of (2) belongs to K0
α, and

f(n, x) is nonincreasing, then
∞∑

k=no

1
rkψ(c)

∞∑

i=k

qif(i, c) <∞, for c > 0. (24)

where K0
α : xn → α, rnψ(xn)∆xn → 0, (n→ ∞).

Proof. Let {xn} be any nonoscillatory positive solution of (2) belongs to K0
α.

Since xn > 0, then α > 0, and there exist two positive constants c1, c2 and an
s ∈ N(no) such that

c1 ≤ xn ≤ c2 for all n ∈ N(s). (25)
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On the other hand, by (2) we get,

rnψ(xn)∆xn +
n−1∑

k=m

qkf(k, xk) = rmψ(xm)∆xm, (26)

for m ∈ N(s) and n ∈ N(m). Taking the limit as n→ ∞ on both sides of (26),
and using K0

α, we obtain

rmψ(xm)∆xm =
∞∑

k=m

qkf(k, xk). (27)

But since by (27) we get,

xm = xs +
m−1∑

k=s

1
rkψ(xk)

∞∑

i=k

qif(i, xi). (28)

Thus it follows by taking the limit as m→ ∞ on both sides of (28) that
∞∑

k=s

1
rkψ(xk)

∞∑

i=k

qif(i, xi) <∞. (29)

But since xn > 0, f is nonincreasing, and ψ is nondecreasing. Thus by (25) we
have

∞∑

i=k

qif(i, c2) ≤
∞∑

i=k

qif(i, xi), and
1

rkψ(c2)
≤ 1
rkψ(xk)

Then
∞∑

k=no

1
rkψ(c2)

∞∑

i=k

qif(i, c2) ≤
∞∑

k=no

1
rkψ(xk)

∞∑

i=k

qif(i, xi),

i.e., the inequality (24) holds. �

Theorem 4. Assume that f(n, x) is nonincreasing. If
∞∑

k=no

qkf(k, a) < ∞, for some a > 0, (30)

and
∞∑

k=no

1
rkψ(b)

∞∑

i=k

qif(i, b) = ∞, for some b > 0. (31)

Then Eq (2) has a nonoscillatory positive solution of class K0
∞, where

K0
∞ : xn → ∞, rnψ(xn)∆xn → 0, (n→ ∞).
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Proof. Introduce the linear space X of all real sequence {xn} such that

sup
n∈N(no)

|xn|
Rno,n(a)

< ∞, where Rno,n(a) =
n−1∑

k=no

1
rkψ(a)

.

It is not difficult to see that

‖x‖ = sup
n∈N(no)

|xn|
Rno,n(a)

, x ∈ X, (32)

is a Banach space [6, 8, 12]. Consider the subset ϕ of X consisting of all x ∈ X ,
such that

ϕ =

{
x ∈ X | a ≤ xn ≤ a+

n−1∑

k=no

1
rkψ(a)

∞∑

i=k

qif(i, a), n ≥ no

}
.

We also define an operator T : ϕ→ ϕ by the formula

(Tx)n = a+
n−1∑

k=no

1
rkψ(xk)

∞∑

i=k

qif(i, xi). (33)

The mapping T satisfies the assumption of the Shauder’s fixed point theorem.
Namely, it satisfies the following

(1) T maps ϕ into ϕ.
(2) T is continuous.

In fact , if for ε > 0, we choose s ≥ no so large such that
∞∑

k=s

qk f(k, a) <
ε

2
, for all n ∈ N(s). (34)

Let {xvn}
∞
v=1 be a sequence of elements of ϕ such that xv → x as v → ∞. Hence

since ϕ is closed, x ∈ ϕ, for all large v it follows that

∣∣∣∣
(Txv)n
Rno,n(a)

− (Tx)n
Rno,n(a)

∣∣∣∣ ≤
∣∣∣∣∣

1
Rno,n(a)

n−1∑

k=no

1
rkψ(xvk)

∞∑

i=k

qif(i, xvi )

∣∣∣∣∣

+

∣∣∣∣∣
1

Rno,n(a)

n−1∑

k=no

1
rkψ(xk)

∞∑

i=k

qif(i, xi)

∣∣∣∣∣

Since x ∈ ϕ, f(n, x) is nonincreasing, ψ(x) is nondecreasing positive value and
a ≤ xn, then ψ(a) ≤ ψ(xn) implies that 1

ψ(a) ≥ 1
ψ(xn) and f(n, xn) ≤ f(n, a).

We have ∣∣∣∣
(Txv)n
Rno,n(a)

− (Tx)n
Rno,n(a)

∣∣∣∣ ≤
∞∑

k=n

qk f(k, xvk) +
∞∑

k=n

qk f(k, xk)

≤ 2
∞∑

k=n

qk f(k, a).
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This shows that limv→∞ ‖Fxv − Fx‖ = 0; i.e., T is continuous.

(3) Tϕ is uniformly Cauchy.
Let x ∈ ϕ and m, n ≥ no∣∣∣∣∣

(Tx)m
Rno,m(a)

−
(Tx)n
Rno,n(a)

∣∣∣∣∣ ≤

∣∣∣∣∣
a

Rno,m(a)
−

a

Rno,n(a)

∣∣∣∣∣

+

∣∣∣∣∣
1

Rno,m(a)

m−1∑

k=no

1
rkψ(xk)

∞∑

i=k

qif(i, xi)

− 1
Rno,n(a)

n−1∑

k=no

1
rkψ(xk)

∞∑

i=k

qif(i, xi)

∣∣∣∣∣

≤
2a

Rno,n(a)
+

1
Rno,m(a)

m−1∑

k=no

1
rkψ(xk)

∞∑

i=k

qif(i, xi)

+
1

Rno,n(a)

n−1∑

k=no

1
rkψ(xk)

∞∑

i=k

qif(i, xi)

≤
2a

Rno,n(a)
+ 2

∞∑

k=n

qk f(k, a).

SinceRno,n(a) → ∞ as n→ ∞.
Hence, for any ε > 0, there exists an integer n1 ∈ N(no) such that, for

n ∈ N(n1),
a

Rno,n(a)
<
ε

4
, and

∞∑

k=n1

qk f(k, a) <
ε

4
.

Thus, ∣∣∣∣
(Tx)m
Rno,m(a)

− (Tx)n
Rno,n(a)

∣∣∣∣ < ε,

for m > n ≥ n1. This means that Tϕ is uniformly Cauchy.

By Lemma 3, we can conclude that there exists, an x ∈ ϕ such that x = Tx;
that is, {xn} is a positive solution of (2). Taking the difference operator on both
sides of (33), we get

rnψ(xn)∆xn =
∞∑

k=n

qkf(k, xk).

Hence, lim
n→∞

rnψ(xn)∆xn = 0, which implies that {xn} is increasing for

n ≥ no, and {xn} either converges to some positive limit or diverges to ∞ as
n → ∞. Suppose that the first case hold. Then, this means that x ∈ K0

α, and
so (24) holds. But this contradicts the assumption (31). Then {xn} is a positive
solution of (2) belongs to K0

∞. �
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Theorem 5. If Eq (2) has a nonoscillatory positive solution of class K0
∞, and

f(n, x) is nonincreasing, then
∞∑

k=no

qkf(k, aRno,k(b)) <∞, (35)

and
∞∑

k=no

1
rkψ(b)

∞∑

i=n

qif(i, b) = ∞, (36)

where a, b > 0, n ≥ no, and Rno,n(b) =
n−1∑

k=no

1
rkψ(b)

.

Proof. Since xn > 0 and x ∈ K0
∞. For any a > 0 and b > 0, by Lemma 4, there

exists m ∈ N(no) such that b ≤ xn ≤ aRno,n(b), for all n ∈ N(m). Since, f is
nonincreasing, then

f(n, xn) ≤ f(n, b), and f(n, xn) ≥ f(n, aRno,n(b)),

for n ∈ N(m). Thus by Eq (2), we obtain

rnψ(xn)∆xn +
n−1∑

k=m

qkf(k, xk) = rmψ(xm)∆xm, for n ∈ N(m).
(37)

Taking the limit of (37) as n→ ∞. Hence since x ∈ K0
∞, we have

rmψ(xm)∆xm =
∞∑

k=m

qkf(k, xk), (38)

since xn ≤ aRno,n(b) and f(n, xn) ≥ f(n, aRno,n(b)), then

rmψ(xm)∆xm ≥
∞∑

k=m

qkf(k, aRno,n(b))

This means that (35) holds. Now since by (38), we have

xm = xno +
m1∑

k=no

1
rkψ(xk)

∞∑

i=k

qif(i, xi) for m ∈ N(no). (39)

Taking the limit as m→ ∞, on both sides of (39), it follows that
∞∑

k=no

1
rkψ(xk)

∞∑

i=k

qif(i, xi) = ∞.

But since f(n, xn) ≤ f(n, b), and
1

rkψ(xk)
≤ 1
rkψ(b)

, then we get (36). �
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